

МОЩНЫЙ СВЕТОДИОД ARPL-9W-EPA-2020-RGB (350MA)

FEATURES

- Low voltage operation.
- ✓ Instant light.
- Long operating life.

APPLICATIONS

- ✓ Spot light, ceiling light.
- Down light, wall lamp, garden light.
- Landscape lighting, lighting engineering.

PACKAGE DIMENSIONS

Note: all dimensions in mm tolerance is +0.1mm unless otherwise noted

PARAMETERS

ABSOLUTE MAXIMUM RATINGS (AT $T_A = +25 \text{ °C}$)

	A		
Parameter	Symbol	Rating	Unit
DC Forward Current	I _F	350	mA
Peak Pulse Current*	I _{FP}	500	mA
Reverse Voltage	V _R	15	v
Reverse Current	I _R	10	μA
Power Dissipation	PD	3*3	w
Operating Temperature Range	T _{opr}	-30+75	°C
Storage Temperature Range	T _{stg}	-40 +85	°C
LED Junction Temperature	TJ	120	°C

Notes

1/10 Duty cycle, 0.1ms pulse width.

Care is to be taken that power dissipation does not exceed the absolute maximum rating of the product. 3 When the LEDs are in operation the maximum current should be decided after

measuring the package temperature, junction temperature should not exceed the maximum rate.

ELECTRO-OPTICAL CHARACTERISTICS (AT T_{A} = +25 °C)

Symbol	Emitting Color	Min.	Avg.	Max.	Units	Conditions
	R	6.0		8.0		
VF	G	9.0	-	12.0	V	l⊧=350mA
	В	9.0		12.0		
Rθ _{J-B}		_	8	_	°C/W	I⊧=350mA
	R	100		120		
Φv	G	270	_	300	lm	I⊧=350mA
	в	60		90		
	R	620		630		
Λd	G	520	_	530	nm	I⊧=350mA
	в	460		470		
Δν _γ /Δτ		_	-2	_	mV/°C	l⊧=350mA
IR		_	_	10	μA	$V_R=15V$
201/2		-	120	-	Deg	I⊧=350mA
	V _F RO _{J-B} Φ v Ad Δ VF/ Δ T I _R	κ κ	R 6.0 Vε G 9.0 RθJ.B - - Φν G 270 Β 60 270 Β 60 270 Λd G 520 ΔVF/ΔT - - I _R - -	$\begin{array}{c c} R & coor & R & coor \\ \hline V_{F} & \begin{matrix} R & 6.0 \\ G & 9.0 \\ B & 9.0 \end{matrix} \\ \hline R \theta_{J-B} & & 8 \\ \hline \Phi v & \begin{matrix} R & 100 \\ G & 270 \\ B & 60 \end{matrix} \\ \hline \Phi v & \begin{matrix} R & 620 \\ G & 520 \\ B & 460 \end{matrix} \\ \hline \Delta V_{F}/\Delta T & & -2 \\ \hline I_{R} & & \end{matrix}$	$\begin{array}{c c} R & 6.0 \\ V_{F} & \begin{array}{c} R \\ G \\ B \end{array} & \begin{array}{c} 9.0 \\ 9.0 \end{array} & \begin{array}{c} - \\ 12.0 \\ 12.0 \\ 12.0 \\ 12.0 \end{array} \\ \begin{array}{c} R \\ R \\ 0 \end{array} & \begin{array}{c} 0 \\ 12.$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Notes

The above forward voltage measurement allowance tolerance is ±0.1V. The above luminous flux measurement allowance tolerance is ±10%. 1. 2.

The wavelength measurement error shown above is plus or minus 0.1nm. 3. 4.

20% is the angle from optical centerline where the luminous intensity is ½ the optical centerline value.

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS CURVES

(T_A=+25 °C, Unless Otherwise Noted)

Wavelength Characteristics

Allowable Forward Current — T_A

ar

Relative Luminous Intensity - T,

Radiation Angle

RELIABILITY TEST STANDARDS

Test Item	REF. Standard	Test condition	Duration	Sample count	Accept
Temperature cycle	JESD22-A104-A	100 ±5 °C +25 °C 30 min, 5 min, 30 min, 5 min	100 cycles	22	0/22
Thermal shock	JESD22-A106	–40 °C +100 °C 30 min, 30 min	100 cycles	22	0/22
High temperature storage	JEITA ED-4701 200 201	Ta=100 ±5 °C	1000 hrs	22	0/22
Low temperature storage	JEITA ED-4701 200 202	Ta=-40 ±5 °C	1000 hrs	22	0/22
Humidity heat storage	JIS C 7021 (1977) B-11	Ta=60 °C RH=85%	1000 hrs	22	0/22
Life test	JESD22-A108-A	Ta=25 °C I _F =350mA	1000 hrs	22	0/22
High humidity heat life test	JESD22-A101	Ta=60 °C RH=85% I _F =350mA	1000 hrs	22	0/22

CRITERIA FOR JUDGING DAMAGE

Test Item	Curre h e l	Test condition	Criteria For	Criteria For Judgement	
	Symbol	Test condition	Min	Max	
Forward Voltage	V _F	l _F =350mA	-	U.S.L*)1.1	
Reverse Current	I _R	V _R =15V	_	10µA	
Luminous Flux	Lm	l _F =350mA	L.S.L*)0.7	_	
Lamp bead lighting test		I _F =350mA			

U.S.L: Upper standard level. L.S.L: Lower standard level.

Note:

The above technical data is only the typical value of the product, not as any application conditions and application mode guarantee.

PACKING STANDARD

4

PRODUCT SPECIFICATION

Storage/use

- 1. In order to avoid moisture absorption, it is suggested to store the products in a drying cabinet with desiccant. The storage temperature is 5–30 °C, and the humidity is <60% HR.
- 2. After storage for six months, it is recommended to reuse the spectral separation to prevent changes in photoelectric parameters.
- 3. It is recommended to dry products that have been sealed and stored for more than six months before use. The drying condition is 65 ±5 °C for 10 hours.
- 4. The product shall be used within 24 hours after opening, otherwise it shall be baked at 65 °C for 4–6 hours before reflow welding.
- 5. Do not press the gel surface with any sharp object (such as tweezers). Do not leave fingerprints on the surface of the colloid. The positive normal pressure of the colloid should be less than 2 newtons and the number of press should be less than 3 times. The lateral pressure of the lens body is less than 1.5 newtons and the number of press is less than 3 times. Pick up materials correctly (as shown below).

Products should not be in contact with water, oil or organic solutions.

The operating current value of the product should consider LED junction temperature.

Repackage unused products in moisture-proof bags and store in a dry place.

External dimensions are subject to change without prior notice.

Anti-static requirements: when using products, must wear anti-static ring or anti-static gloves, all equipment, devices, machines must be effectively grounded. This product belongs to electrostatic sensitive device, pay attention to anti-static protection!

When LED working, push the temperature of PCB board should not exceed 60 °C.

Anti–vulcanization, chlorination, bromination and other treatments.

In the closed, high temperature environment, the lamp may contain sulfur/chlorine/bromine and other substances, these sulfur, chlorine and bromine elements will volatilize into gas and corrosion LED light source. Because the LED seal silica gel has porous structure, and the light source silver plating reaction occurred. After curing reaction of LED light source, the functional area of the product will darken, the luminous flux will gradually decline until it becomes slightly bright, and the color temperature will drift obviously, and the LED light source will eventually fail. It is recommended to conduct sulfur emission test of lamps first to ensure that LED light source works in sulfur-free/chlorine/bromine and other material environment. When the customer applies LED, it shall refer to the parameters of this specification and the requirements of operating environment. If the LED is used beyond the parameters or standard conditions without verification, our company will not make any quality guarantee.

Other points for attention, please refer to our LED user manual.

